Name: ____

Section: _____

Remember to study

- 1. Exam 1 and Review Packet
- 2. Exam 2 and Review Packet
- 3. Exam 3 and Review Packet
- 4. The material since Exam 3 $\,$
- 5. Homework and solutions

optimization worksneet	Maill 201
Name:	Section:
Optimization	
1. Define: We say that f has	s a <i>critical point</i> at (a, b) if
In other words, either	or
In other words, either	01
,	
2. The	are all the <i>potential</i> local maxima and minima.
2. The	are all the <i>potential</i> local maxima and minima.
 The Second Derivative Test: on a disc around (a, b). 	are all the <i>potential</i> local maxima and minima. Suppose that f has a critical point at (a, b) and if f is differentiable
 The Second Derivative Test: on a disc around (a, b). 	are all the <i>potential</i> local maxima and minima. Suppose that f has a critical point at (a, b) and if f is differentiable Define $D = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^2$
 The Second Derivative Test: on a disc around (a, b). Derivative Test: Derivative Test: Derivati	are all the <i>potential</i> local maxima and minima. Suppose that f has a critical point at (a, b) and if f is differentiable Define $D = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^2$
 2. The	are all the <i>potential</i> local maxima and minima. are Suppose that f has a critical point at (a, b) and if f is differentiable Define $D = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^2$ 0 > 0, then
 2. The	are all the <i>potential</i> local maxima and minima. are Suppose that f has a critical point at (a, b) and if f is differentiable Define $D = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^2$ 0 > 0, then 0 < 0, then
2. The 3. Second Derivative Test: on a disc around (a, b) . Derivative Test: on a disc around (a, b) . Derivative Test: (a, b). Derivative Test: (b) If $D > 0$ and $f_{xx}(a, b)$ (c) If $D > 0$ and $f_{xx}(a, b)$ (c) If $D < 0$, then	are all the <i>potential</i> local maxima and minima. Suppose that f has a critical point at (a, b) and if f is differentiable Define $D = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^2$ 0 > 0, then 0 < 0, then
2. The 3. Second Derivative Test: on a disc around (a, b) . Derivative Test: on a disc around (a, b) . Derivative Test: (a) If $D > 0$ and $f_{xx}(a, b)$ (b) If $D > 0$ and $f_{xx}(a, b)$ (c) If $D > 0$ and $f_{xx}(a, b)$ (c) If $D < 0$, then	are all the <i>potential</i> local maxima and minima. Suppose that f has a critical point at (a, b) and if f is differentiable befine $D = f_{xx}(a, b) f_{yy}(a, b) - (f_{xy}(a, b))^2$ 0 > 0, then

critical point	f_{xx}	f_{yy}	f_{xy}	$D = f_{xx}fyy - (f_{xy})^2$	analysis

Math 261

Section: _____

5. Find all critical points of the given function and use the second derivative test to identify each as a local maximum, a local minimum, or undetermined.

$$f(x,y) = x^2y - 4y$$

Math 261

Section: $_$

6. Find all critical points of the given function and use the second derivative test to identify each as a local maximum, a local minimum, or undetermined.

$$f(x,y) = x^2 + y^3 + 6x - 3y$$

Math 261

Section: _____

7. Find all critical points of the given function and use the second derivative test to identify each as a local maximum, a local minimum, or undetermined.

$$f(x,y) = -x^2 + xy - y^2 + 12y$$

Section: $_$

Integrating Functions of Two Variables

Notation: we denote rectangles as the *cartesian* product of two intervals.

 $R = [a,b] \times [c,d] = \{(x,y): a \leq x \leq b \text{ and } c \leq y \leq d\}$

1. Let $R = [0,3] \times [0,2]$. Compute the following integral

$$\iint_R xy^3 \ dA$$

2. Let $R = [1, 2] \times [0, \frac{\pi}{3}]$. Compute the following integral

$$\iint_R x \cos(2y) \ dA$$

Name: ____

Section: _____

3. Let
$$\int_{1}^{2} \int_{y}^{2y-1} 2x - y^{2} dx dy$$

- (a) Sketch the region of integration
- (b) Compute the specified volume.

Section: ___

- 4. Let $f(x, y) = 2y x^2$. Compute the net volume under f on the region D bounded between y = 3x and $y = x^2$.
 - (a) Sketch the region of integration

(b) Write the volume under f on D as a Type I integral (where functions give the boundary for the top and bottom of D).

(c) Compute the volume under f(x, y) on the specified region

Name: ____

Section: _____

5. Let
$$\int_0^4 \int_0^{\sqrt{x}} xy \, dy \, dx$$

- (a) Sketch the region of integration
- (b) Compute the specified volume.

(c) Write an *equivalent* integral with the order of integration reversed

Section: _____

Integration in Polar Coordinates

1. Sketch the region defined by the polar rectangle \mathcal{R} with $r \in [1,2]$ and $\theta \in [0,\pi/2]$. Then compute the net volume under f(x, y) = 4xy + 3x on \mathcal{R} .

Section:

2. Suppose that a washer \mathcal{D} with an inner radius of 1m and an outer radius of 2m is centered at \mathcal{O} . The density of \mathcal{D} is given by $d(x, y) = x^2 + y^2$. Compute the mass of the washer.

Name: _____

Section: _____

Triple Integrals

1. Compute
$$\iiint_{\mathcal{B}} \frac{2x+6y}{z} \, dV$$
 on the box $\mathcal{B} = [0,3] \times [1,2] \times [1,e]$.

Section: $_$

2. Let f(x, y, z) = x be a density function. Compute the mass of the region bounded by the planes z = x - 2y and z = 2x + y above the rectangle $[0, 2] \times [0, 1]$.

Final Exam Review

 ${\rm Math}~261$

Name: _

Section: _____

3. Compute the integral

 $\int_0^2 \int_0^{1-x} \int_x^{x+y} x \, dz \, dy \, dx$

Section: $_$

Integration in Cylindrical and Spherical Coordinates

1. A certain density function is given by $f(x, y, z) = z\sqrt{x^2 + y^2}$ in kg/m^3 . Integrate f over the cylinder \mathcal{W} with $x^2 + y^2 \leq 4$ and $1 \leq z \leq 5$.

Section:

2. Set up and evaluate the integral of f(x, y, z) = z on the cylinder \mathcal{D} with $x^2 + y^2 \leq 4$ above the x - y plane and below the plane z = y.

Final Exam Review	Math 261	
Name:		Section:

3. Use integration with spherical coordinates to compute the volume of a sphere of radius r.

Section: $_$

4. Suppose you buy a spherical bearing with radius $\rho = 2 m$. The bearing's density is given by $f(x, y, z) = x^2 + y^2 + z^2$ in kg/m^3 . Find the mass of the bearing.